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The development of the wave process excited by the vibrations of a strip 
immersed in a fluid is investigated; the form of the undamped waves which 
are generated is found, the energy of these waves is calculated and com- 
pared to the energy of the vibrating strip. 

The analogous problem 
by Alblas [ 1 1. 

for the case of steads motion has been examined 

1. Let the fluid fill the part of space y I> 0, z < 0. From z = 0 to 
z=- h in the plane y = 0, there is located a strip which, beginning at 
the time t = 0, performs vibrations according to the law y = a exp [ i(kx- 
wt) 1 . ‘The continuation of this strip from z = - h to z = - OQ is a solid 

immovable wall. At the initial time t = 0 the fluid is at rest and its 

free surface is horizontal. 

We shall set ourselves the problem of finding the form of the free 

surface of the fluid at any time t > 0. The velocity potential $(x,y,z, t) 
of the unknown wave motion must satisfy the equations 

Acp = 0 (1.1) 

acp (? Y. 0. 0) = 0 

at 

We shall seek a function &(z, y, z, t) which satisfies conditions 

(1.1) and (1.2); for that purpose we shall represent it in the form 

%(x9 9, 2, t) = X (y, z)e*(hx-W (1.4) 

Then ~(y, z) must satisfy the following equations: 

1648 
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g+g4%=0 

at 2 = 0 (c5 = OPg-1) 

0 b < - 4 
aio (2 > - h) 

Representing ~(y, z) in the form 

x (9, 2) = Jiu~~+~zlLt_ i A (cl) e- 

(1.8) 

Ym(pcospz + 0sinpz)dp (fs>k) 

we see that ~(y, t) with lrbitrary c and A(p) satisfies Equations (1.5) 
and (1.6). 

Satisfying condition (1.7), we have 
(3 

Making use of the solution of this equation given in 12 I, we obtain 

Therefore 

where A(p) and c are given by Formulas (1.10). We shall represent the 
velocity potential 4(x, y, z, t) in the form of a sum of three terms: 

cp (G Yt 2, 4 = w tz1 ?I, 29 t) + rp, tz, Y, 29 t) + cps (5 Y, 2, t) (1.12) 

Here Q) 

(Pa = s 
B (m) cos my exp {i[ka: - 8 (m) t] + zvka + ma} dm (1.13) 

0 

%=fh 1 m cosmyexp{i[kz+8(m)t] +z’~ka+ma}dm (1.14) 
0 

8 (m) = +ga (kg + m*) 



It is obvious that r& and $3 with arbitrary B(B) and D(m) satisfy con- 

dition (l.l), the first equation of condition (1.2) and also the second 

equation of (1.2) with the right-hand sidt: equal to zero. Satisfying can- 

ditions (1.3), we arrive at the following equations for determining B(n) 

and D(m): 

where 
do Q) Co 

Performing the calculations, we find 

where 

Qr = m+I/&--k2, q2=-m+vas-kP 

Here 6 is the Dirac delta-function and P is the symbol 
cipal value of the integral. Now, from (1.13) we obtain 

(Li7) 

far the prin- 
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where 

c2 = p ($gco = 521 + L2 (1.18) 

czl = fi eikx 
% 

2w cos l/a2 - k2yeciof + (1.19) 

M,(n)=i(n-v?1+n2), M, (n) = -- i (n + v Cl + n2) 

y = ty-lg'hk-'12, al. = ok-l, 

In an analogous manner we obtain 

where 

53 = $ (gy*+ = 531+ 532 
(1.21) 

4 

L, = - 
c 1/62 - k” 

co 

2n V$ 
eikxp 

s 

631 --VI + n2 
cl'2 - n2 - 1 

[ e--kyM, (n) + e--FiyMz (n)] dn (1.22) 

n 

Thus, the equation of the free surface of the fluid at any time t > 0 

has the form 

5 = L + 52 + 53 

:;y; )L 43 are represented respectively by Formulas (1.12), (1.18) 
. . 

2. We shall pass on to the investigation of this solution. Applying 

the method of stationary phase for large values of ky in investigating 
the integrals which enter into Expression (1.191, we see that the inte- 

grand of the second integral has no stationary points on the positive 

real axis since Mz'(n) does not vanish here and the Re $(n) G 0 on the 

contour L, which consists of the positive real axis with a circuit about 

the pole II = no = d (aI2 - 1) along a semi-circle lying in the lower 
half-plane. lherefore 
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where 
-._ _._. 

WI + j, + !iJ 
f (n) = ~-.-- &P ̂ _ n;! .- 1 

We shall introduce the designations 

It is easily seen that the equation M,’ = 0 has no positive roots for 

tr < v0 and that it has two different positive roots for Y > vu; moreover, 
Re MI(n) Q 0 for v < V’ on the contour L,, which consists of the positive 

real axis with a circuit about the pole along the upper semi-circle, and 
also for v > V’ on the contour L,. Carrying out the calculation of the 
residue taking into account the direction of the circuit about the pole, 
we obtain the following value for the first integral of Formula (1.19): 

where 

Making use of the Kelvin method (cf., for example, 13 1 1 to estimate 
integrals of the form (2.3) for large values of ky, we obtain from 
Formulas (1.191, (2.1) and (2.2) the following value for tzl: -- 

521 = 
icg-lwexy 1 i (kx $- y t/d” - k2 - wt) ] -;- J, (2: < v”) 

J4 (v :.> Y”) 
(2.4) 

where 

J, ::z 0 [(lc7p] for v < vat J, = 0 #cyyq for v > Y. 

We shall. pass on to the investigation of Formula (1.20). The integrand 
in this formula as a function of the variable n has no singularities on 
the real axis; therefore, using the results of the investigation of the 
expressions Ml(n) and &((n) which we carried out, we find the asymptotic 
value of rz2 for large values of ky 
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Passing on to the investigation of the expression 13, we note that the 
essential difference of Fxpression (1.22) from the integral terms sununed 
in Formula (1.19) which we investigated is that the integrand in (1.22) 
has no poles on the real axis, and therefore the symbol of the principal 

value of the integral loses its meaning here and the integration is 
carried out along the positive real axis. Using the Kelvin method to 
estimate Expression (1.22) for large values of ky, we have 

L = 0 ](@)-‘I for v < vor 691 = 0 ](ky)-“1] for v > v. (2.6) 

The investigation of the expression <,, is carried out in a manner 
exactly analogous to the investigation of Lz2 and leads to the following 
result: 

La = 0 G?/)-lI for v < vo, L = 0 [(IEy)-‘~I for v > v. (2.7) 

We shall denote by y1 that value of y beginning with which our asymp- 
totic formula is valid, and we shall introduce the additional designations 

Vl = lf if 
2k’ %= 

g1/o*--_y 
208 ' 

t, = J! 
Vl ’ 

t, = E 

Then Formulas (1.12), (2.4) to (2.7) give the following expressions for 
the elevation of the fluid in the region y > yl: 

1) Waves of form 

5 = 0 ](IEy)-r 

2) Waves of form 

5 = 0 [(ky)-q 

3) Waves of form 

for t< tl in the region y>yl 
for t>tl in the region y> vd (2.8) 

for ta > t > ti in the region yI < y < vIt 
forat> ta in the region vat < y< vlt (2.9) 

5 = 2aoa (1 
g I/o” - ka 

- e-k) sin (Icz + y voa - ks - at) 

lhe results of the investigation that has been carried out, which are 
expressed by Formulas (2.8) to (2.10), indicate that in the case under 
consideration waves whose amplitudes decrease with increasing distance 
from the vibrating strip are propagated on the surface of the fluid in 
the region y > yI for time t < t2. For time t > t2 the following picture 
of the motion of the surface waves arises: in the region y1 < y < v2t 

steady plane progressive waves of form (2.10) are generated whose fronts 
move along the y-axis with velocity vt equal to the projection on the 
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y-axis of the group velocity of the waves; in the region v2t < y < vlt 
damped waves of form (2.9) are propagated, whose fronts move with velo- 
city v1 and whose rear boundaries move with velocity v2 in the positive 
direction of the y-axis; the region y > v,t is filled with damped waves 

of form (2.8), whose rear boundaries move along the y-axis with velocity 

Ul’ 

3. We shall find an expression for the work which is performed by the 
strip vibrating in the fluid. ‘Ihe work of the strip per wavelength of the 
strip at time t is represented in the form of a sum of three terms 

where 

Since 

where Q(m) t - i s(m), thus after substituting in place of B(m) its value 
given by Formulas ( 1.16 ) and (1.17) and after taking into account that 
Re Q(m) < 0 on the contour L,, we obtain 

where 

q(m)- -.- Pa@ I I-’ kvkv 

--h “j--q IO + 8 (tn)] ei*f 

(3.3) 

Evaluating Expression (3.3) and an analogous expression W, for large 
values of the time t, we have 

We shall pass dn to the calculation of W,. Since 



llavts generated by vibrations of a strip 

= _ i&W-d) 

0 

thus after substituting this expression in Formula 

W -S?!(&e~") 
1- 

+ asinpe)dlp] 

(3,l) we find 

1655 

Hence we obtain that the work E perfurmed by the strip per wavelength 
of the strip during a period of vibration of the strip has, with accuracy 

to quantities of order tm112, the form 
i+2xo.i-* 

E= 
f 

W,dt = 
x’c~p J,& - kl 

ak 
t 

(3.4) 

We shall now calculate the energy which is carried away by the steady 

waves of form (2.10) which we shall write as 

5 = N sin(az'--mot); 

where the direction of x* makes the angle a with the y-axis. 

The energy E, carried by these waves dming the time period 2n 0-l 

&rough a plane of width 2~ K-’ cos a perpendicular to the direction of 

probagation of the waves is expressed as 
- 

scNapgX cos a 
El= 2 

= R2C2Q&+-k0 

Sk - (3.5) 

Comparing Formulas (3.4) and (3,5), we arrive at the conclusion that 
for large values of the time t the energy of the strip goes completely 
to the generation of undamped waves. 

‘Ihe author wishes to express his deep gratitude to L.N. Sretenskii 
for his valuable advice during the execution of the present work. 
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