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The development of the wave process excited by the vibrations of a strip

immersed in a fluid is investigated; the form of the undamped waves which
are generated is found, the energy of these waves is calculated and com-

pared to the energy of the vibrating strip.

The analogous problem for the case of steady motion has been examined
by Alblas [11].

1. Let the fluid fill the part of space y > 0, z < 0. From z = 0 to
z = — h in the plane y = 0, there is located a strip which, beginning at
the time t = 0, performs vibrations according to the law y = a exp [i(kx—
ot)]. The continuation of this strip from z = — h to z = — = is a solid
immovable wall. At the initial time t = 0 the fluid is at rest and its
free surface is horizontal.

We shall set ourselves the problem of finding the form of the free
surface of the fluid at any time t > 0. The velocity potential &(x,y,z,t)
of the unknown wave motion must satisfy the equations

Ag =0 (1.1

2o g - dpy (O <=8 (o
ot +8 z at z=0, <9y)u=0_ { zie'®x—o ;> — h) (:2)
(2, 9, 0,0) =0, @_(ﬂgl;or_o_)zo (1.3)

We shall seek a function ¢,(x, y, 2z, t) which satisfies conditions
(1.1) and (1.2); for that purpose we shall represent it in the form

¢ (z, ¥, 2, t) = % (y, 2) etlhkx—ot) (1.4)

Then k(y, z) must satisfy the following equations:
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Fyi T aa— k=0 (1.5)
xy [0 (¢<—h)
(—3_3}>u=o_ { aio (z>—h) 1.7)

Representing x(y, z) in the form

. (1.8)

% (y, z) = celv Veiiitoz] o4 S A(p)evVeiti (ncospz + asinpz)dp (6> k)

0
we see that x(y, z) with arbitrary ¢ and A(p) satisfies Equations (1.5)
and (1.6).

Satisfying condition (1.7), we have (1.9)

- w 1 —h
i VI —Foer —{ AW VTR (peospz + osinpn)dn = {5,y GSTH)

0

Making use of the solution of this equation given in [2 ], we obtain

— 230 ek - 2aiw [o(1 — cos ph) — p sin p A}
Cmye—me T AWM= w10
Therefore

1 (8 o . 7 J—
§1=;(ai:‘)1_o=—%e‘(""“"‘){ce‘”’“ "—{-S}LA (1) e vV»%dp} (1.11)

0

where A(p) and ¢ are given by Formulas (1.10). We shall represent the
velocity potential ¢(x, y, z, t) in the form of a sum of three terms:

(P(z, y» Z, t) = q)l (zv y» z) t) + q)l(z’ yv zv t) + (Pa(zn y» Z, t) (112)

Here .
Py = S B (m) cos my exp {ilkz — & (m)t) + 2V k? + m?*} dm (1.13)

1]
@5 = S D (m)cosmyexp (i [kz + 8 (m)t] + 2V F m¥ydm  (1.14)

1}

o(m) = VFE T
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It is obvious that ¢, and ¢, with arbitrary B(m) and D(n) satisfy con-
dition (1.1), the first equation of condition (1.2) and also the second
equation of (1.2) with the right-hand side equal to zero. Satisfying con-
ditions (1.3), we arrive at the following equations for determining B(m)
and D(m):

(B (m) + D (m)] cos my dm = — % (3, 0)

[B{(m) — D(m)] 8 (m) cos mydm = — wx(y, 0)

Hence

B(m)=—2£2000 7)), Dm)=25ER 0+ 1) (1.15)

where
o

¢ o
:-_:C‘ evaWcosmydy, jﬁ 28 cos8 mydyg [v‘A (F)E“VVW&p
o o

(4}

Performing the calculations, we find

B (m) = B, (m) + Bs(m)

where

By(m) = — 5252 08(0) + L P (@) +8(a0) + £ P (@] (1.16)
=m+Vo*—§, Ga=—m+Y P —k
0+3(m)( pAWVETR -
By (m) = — 8 (m) S m3 -l k2 dp (1'17)

Here & is the Dirac delta-function and P is the symbol for the prin-
cipal value of the integral. Now, from (1.13) we obtain

P2 (x’ Yz t) = @21 (x’ Y, z, t) -+ Qg2 (1'7 L ERD) t)

where
[v]
Pay = S By (m) cos my exp {i [kz — ¥ (m) 1] -+ sV EE+ mdydm
Q
Pz = S B, (m)cosmyexp {i [kx — ¥ (m)t] + V2 4+ m¥ dm
aQ
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to= (), =+ Cas (1.18)

where

Lo = 2_g  gikx {2@) cos V62 — kye—iot |- (1.19)

oo 4
4+ i Vek(®— k) p S o+ V14 1nz [ekyMi(n) | ghuMa(n)) dn}

Ttk 5]2__n2_

[

vy = ik meikx S ( + V'1 + nZ)S %dp[ekwﬁ(m + ekvM:m] dn
2g p k*n? - p? + (1.20)
i(1.

————— ‘ et
Ml(n)zi(n—v]/i-}—n?), My(n)=-—i(n+vV1TFn?
v =ty gk, oy = ok, o, = o (gh)™

In an analogous manner we obtain

(7]
Qa‘—‘ P (;’;3) C31+§32 (1'21)
where
e _cVe—# eikx 00031—1/1-*-” —kyM, (n —kyM(n
ST T on vk "PST:,Lz—Ie UM () | e—kuMa (M) dp (1.22)

ik Vak .o s 2 R
Las — L%&’_‘ gk X (0, —VIF nz)g %]%;—:_—k,;d” [e—kVMi(n) | g—kUMum) | dpy
’ ° (1.23)
Thus, the equation of the free surface of the fluid at any time ¢t > 0

has the form

C=0+0+0

where ¢, {,, {, are represented respectively by Formulas (1.12), (1.18)
and (1.21).

2. We shall pass on to the investigation of this solution. Applying
the method of stationary phase for large values of ky in investigating
the integrals which enter into Expression (1.19), we see that the inte-
grand of the second integral has no stationary points on the positive
real axis since M, ’(n) does not vanish here and the Re M, (n) < 0 on the
contour L, wh1ch consmts of the positive real axis w1th a circuit about

the pole n =n%=y (a — 1) along a semi-circle lying in the lower
half-plane. Therefore
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nk

e M iy Vi tot)
V__:W_e v (2.1)

P S f(n) ekvMs(n)dn = S f(n) ekﬂMz(n)dn+
0 (L)

where

f(n) wy -{-— V1 +nd

1 —n-—-fl

We shall introduce the designations

4
. _VT0R 0 Em{’ﬁw
v, =} 108, V0 == Ve =7
It is easily seen that the equation M,” = 0 has no positive roots for

v < v, and that it has t.wo different pos1t1ve roots for v > v,; moreover,
Re M,(n) < 0 for v < v? on the contour L,, which consists of the positive
real axis with a circuit about the pole along the upper semi-circle, and
also for v > v® on the contour L. Carrying out the calculation of the
residue taking into account the direction of the circuit about the pole,
we obtain the following value for the first integral of Formula (1.19):

0 T T5(Ly) (v <)
KM (ol 2.2
P§f(”)” n { J4+Js(ly) (v>V) %2
where
ink ei(v }‘fd__'—-kz"uﬂl ’JB (L) g S f(n)(l’flﬂ\fl(")dn (2_3)

Vie —h ek )

Making use of the Kelvin method (cf., for example, [3 1) to estimate
integrals of the form (2.3) for large values of ky, we obtain from
Formulas (1.19), (2.1) and (2.2) the following value for {,,:

icglwexp litkz+ yV o — Rk —ot)] +J, (v <)

oy = 7. v o V) (2.4)

Jy == O [(ky) ] for v <l v, Jo= O |{ky)~"a] for v >,

We shall pass on to the investigation of Formula (1.20). The integrand
in this formula as a function of the variable n has no singularities on
the real axis; therefore, using the results of the investigation of the
expressions M,(n) and M,(n) which we carried out, we find the asymptotic
value of {,, for large values of ky

Coa=O0[(ky)]  for v<vp Lo = Ol(kY) ™1 for v>v, (2.9)
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Passing on to the investigation of the expression {;, we note that the
essential difference of Expression (1.22) from the integral terms summed
in Formula (1.19) which we investigated is that the integrand in (1.22)
has no poles on the real axis, and therefore the symbol of the principal
value of the integral loses its meaning here and the integration is
carried out along the positive real axis. Using the Kelvin method to
estimate Expression (1.22) for large values of ky, we have

C»:u =0 [(ky)-ll for v < vy §31 =0 [(ky)‘l/'] for v>> v, (26)

The investigation of the expression {,, is carried out in a manner
exactly analogous to the investigation of {,, and leads to the following
result:

Laa=O0 (k)] for v<wo, Laa=O[(ky)™] forv>wv, (2.7)

We shall denote by y, that value of y beginning with which our asymp-
totic formula is valid, and we shall introduce the additional designations

_1/_& _gVot —Fg _n _n
”1'”.l/r2k]/§7’ =g v h=y BT

Then Formulas (1.12), (2.4) to (2.7) give the following expressions for
the elevation of the fluid in the region y > y;:

1) Waves of form

= 0 [(ky)™! for ¢t <<t in the region y> y
¢ [( y) {for t>1 in the region y> nt (2‘8)

2) Waves of form

¢ = O [(ky)~"1] { for ta>t>tiin the region y, <y < oyt

fort >t in the region vyt <y < vyt (2.9)

3) Waves of fom

fort>t; in (2.10)

2a0? — e—hYsin (k T2
(= (1—e¢ )sm(x-i-yVG ot) the region 1<y < vyt

T gVa—
The results of the investigation that has been carried out, which are
exprt.:ssed by Formulas (2.8) to (2.10), indicate that in the case under
consideration waves whose amplitudes decrease with increasing distance
from the vibrating strip are propagated on the surface of the fluid in
the region y > y, for time t < t,. For time t > t, the following picture
of the motion of the surface waves arises: in the region y, < y < v,t
steady plane progressive waves of form (2.10) are generatecli whose fionts
move along the y-axis with velocity v, equal to the projection on the
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y-axis of the group velocity of the waves; in the region v,t < y < v;t
damped waves of form (2.9) are propagated, whose fronts move with velo-
city v, and whose rear boundaries move with velocity v, in the positive
direction of the y-axis; the region y > v;t is filled with damped waves
of form (2.8), whose rear boundaries move along the y-axis with velocity
vy.

3. We shall find an expression for the work which is performed by the
strip vibrating in the fluid. The work of the strip per wavelength of the
strip at time t is represented in the form of a sum of three terms

W=W,+W,+W;

where
0 xf-2nkt a
W, = S dz S p [(%);,20-5’3 + %4] aw sin (kz — ot) dz (3.1)
"
] x+2f=k“ ap.
W; = S dz S P(—aTJ Ym0 ao sin (kz — ot) dz G7=23 3.2)
- x
Since
aw oo
(38),_,= =1 \ Bm)® (m)exp lika+ @ (m)t + s VIE T m2l dm
4]
where Q(m) = -~ i &(m), thus after substituting in place of B(m) its value

given by Formulas (1.16) and (1.17) and after taking into account that
Re Q(m) < 0 on the contour L;, we obtain

Wy=ic) skt & b g

P R
(Ly)
o e AVt R
T S ¥ (m) S pp.z{‘%- [ pos dpe!?mdm (3.3)
o o

where

pao [t — e VR 16 4 8 0m)] iy

bm) = -- KV F m

Evaluating Expression (3.3) and an analogous expression W, for large
values of the time t, we have

W, = 0 (t='h), W, = 0 (1)

We shall pass on to the calculation of W,. Since
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(Fil)va-o = — [@etkz—0l) [ce"’+ ‘§° A (n) (u cos pz + o sinpz) dp.]

0
thus after substituting this expression in Formula (3.1) we find

2
W= (1 —eh)

Hence we obtain that the work E performed by the strip per wavelength
of the strip during a period of vibration of the strip has, with accuracy
to quantities of order ¢ 172 the form

t2ne—t _
B} 3.3 O
E= S wldzz’””;f (3.4)

t

We shall now calculate the energy which is carried away by the steady
waves of form (2.10) which we shall write as
. . . _ Vo' —ig _ o
t = N sin(cz'—ot), cos e = ———— =

where the direction of x’ makes the angle a with the y-axis.

The energy E; carried by these waves during the time peried 27 w™ -1
through a plane of width 27 k™! cos a perpendicular to the direction of
propagation of the waves is expressed as

.«N’_ A cosa ntc?p V ot— k3
= Weghoosa _ wcp VIR (3.5)

Comparing Formulas (3.4) and (3.5), we arrive at the conclusion that
for large values of the time t the energy of the strip goes completely
to the generation of undamped waves.

The author wishes to express his deep gratitude to L.N. Sretenskii
for his valuable advice during the execution of the present work.
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